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Flow-induced transition from cylindrical to layered patterns in magnetorheological suspensions
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A transition from a hexagonal to a layered pattern is observed when a magnetic suspension structured by a
magnetic field is submitted to an oscillating shear flow. This transition occurs at a well-defined straingo

50.15, which is found to be independent of the cell thickness, the intensity of the magnetic field, and the
Péclet number. This layered pattern is stable in the absence of the flow if it has been formed at a Pe´clet number
higher than unity. In this domain the period of the stripes increases with the intensity of the magnetic field and
decreases with the initial volume fraction of magnetic particles. These features are explained by a model based
on the minimization of the magnetic energy and on the equilibrium of osmotic, hydrodynamic, and magnetic
pressures.@S1063-651X~98!02101-1#

PACS number~s!: 82.70.Kj, 47.10.1g, 83.10.2y
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I. INTRODUCTION

The competition between long-range repulsive and sh
range attractive interactions determines the pattern forma
for many physical systems where dipolar or Coulom
forces are present@1#. The long-range repulsive forces ten
to divide the matter in order to reduce the repulsive ener
whereas attractive forces such as those giving rise to sur
tension or a Lorentz field tend to gather the matter in a sin
unit. This observation explains that patterns formed in v
different physical systems can have striking similarity. F
instance, the undulation instability of a striped pattern t
gives rise to the chevron structure is observed in magn
liquids @2#, thin ferromagnetic films@3#, and some system
governed by reaction-diffusion equations@4#. In magnetic
liquids, the change of period of a striped pattern with t
amplitude of the external magnetic field has been succ
fully predicted when the effective surface tension at
boundary between the two phases is known@5,6#. In the lim-
iting case where the period of the structure is much lar
than the thickness of the layer, this approach can also
scribe the structures of other systems such as amphip
monolayers@7#.

Pattern formation has also been observed in electrorh
logical ~ER! and magnetorheological~MR! suspensions
which are suspensions of much larger~1–10mm! paramag-
netic or dielectric particles. Well-defined structures form
with cylindrical aggregates aligned with the magnetic fie
and arranged in an hexagonal pattern have been observ
MR fluids at low volume fraction@8,9#. The transformation
of these cylindrical structures into a striped pattern in
presence of a shear flow was observed many years ago@10#,
but never carefully studied. It is the purpose of this pape
report on this transition and to analyze it by adapting
models used for ferrofluids. It is worth noting that if th
cylindrical structure is found at a low volume fraction,
layered structure is predicted to have a lower energy
higher volume fractions@11#. Striped patterns also have bee
observed in ER fluids in the presence of oscillating sh
flow @12# and also predicted by numerical simulations
571063-651X/98/57~1!/804~8!/$15.00
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steady shear flows@13,14#, but their origin is different due to
the absence of a depolarizing field that is canceled by
charges brought by the electrodes. This important differe
from the magnetic case and also the presence of an i
polarization in ER suspensions that can be out of phase
the shear flow make the interpretation quite different. In t
paper we shall limit our discussion to MR fluids only.

There are two main differences between magnetorh
logical suspensions and ferrofluids. First, the aggrega
phase of a MR suspension is compressible and its volu
fraction will be determined by a balance between the m
netic pressure and the osmotic pressure. Actually, the q
unusual observation@15# that the elongation of an agglome
ate of particles in MR suspension decreases when the m
netic field increases can be explained by taking into acco
the change of volume fraction of particles inside the agglo
erate@16#. Second, the surface tension only comes from
difference between the local magnetic field inside the agg
gate and the one on the boundary@17,18#. As the magnetic
moment of the micronic particles is induced by the field,
the structure in MR suspensions is determined by the c
petition between field-induced dipolar forces; this is not n
essarily the case in ferrofluids, where the surface tension
to the interactions between the permanent dipoles is
important.

In this paper we are going to present some experime
results on the transition from a cylindrical to a striped patte
in a MR suspension~Sec. III! and on the period of this lay
ered pattern~Sec. IV A!. In particular, we shall show that, in
contrast to incompressible magnetic liquids, the period of
layered structure increases with the external magnetic fi
strength. Also, the undulation instability of the striped stru
ture appears when the field is decreased~instead of increased
in ferrofluids@2#!. In Sec. IV B and IV C these differences o
behavior from a ferrofluid are explained by a model th
takes into account the compression of the stripes by the m
netic field. Section V is devoted to a discussion of the mod
We shall in particular emphasize how the presence of
shear flow can modify the relation between the period of
pattern and the amplitude of the magnetic field.
804 © 1998 The American Physical Society
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57 805FLOW-INDUCED TRANSITION FROM CYLINDRICAL TO . . .
II. EXPERIMENTAL TECHNIQUE AND MATERIAL

In order to detect the changes of structure induced b
flow and a magnetic field, we have used the device show
Fig. 1. The suspension is placed between two glass disks
upper one is fixed on the arm of an electromagnetic vibra
and the lower one on a vertical micropositioner with subm
crometer resolution on the displacement. On each disk,
side in contact with the suspension is coated with a trans
ent film of tin indium oxide. The presence of these two ele
trodes allows us to measure the capacity of the cell, wit
Hewlett-Packard impedance analyzer. This is done by
cording the change of capacity with the distance with
bringing them into contact, which could destroy the adju
ment of parallelism between the disks. This adjustment
parallelism is carried out by looking at the Fabry-Pe´rot
fringes produced by the reflections of a laser beam betw
the two plates. The horizontality of the cell is also adjus
by using the reflections of the laser beam on the glass di
The error on the parallelism is less than 3mm across the
whole surface and the error on the average thickness of
cell is less than 2mm.

After the liquid has been introduced with a syringe, t
lower plate is raised to a fixed distance from the upper
~less than 500mm because the liquid is held by capillar
forces!. The horizontal displacement of the upper plate
measured with an optical detector, which detects the cha
of the light reflected by a small mirror mounted on the upp
plate ~cf. Fig. 1!. The amplitude and frequency of the osc
latory motion are driven by a standard amplifier and a f
quency generator. The field is set up with coils in a Hel
holtz configuration and the images of the structure
recorded by an optical microscope and a video camera.
magnetic field is driven by a computer that also records
upper plate displacement.

The suspension we have used is made of polystyrene
ticles containing inclusions~63% by weight! of magnetite.
These particles, designed by Rhoˆne-Poulenc, are spherica
but polydisperse with an average radiusa50.24mm mea-
sured by dynamic light scattering. These particles behav

FIG. 1. Schematic view of the device used to study the sh
induced stripe pattern.
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a superparamagnetic material: They do not show any m
netic hysteresis. The initial permeabilitymp of the particles
was obtained from the magnetization of the sample meas
with a vibrating magnetometer; we findmp537. The corre-
sponding magnetic moment of a particle placed in the ex
nal magnetic fieldH0 will be

mp54pm0ba3H0 , b5~mp21!/~mp12!.

We note that for high initial permeability, the factorb is
close to unity and the magnetic moment becomes prop
tional to the volume of the particle. When we increase
field we observe a phase separation of the suspension
two phases: a concentrated one and a diluted one. In
absence of shear, the main quantity that will control t
phase separation is the ratio of the magnetic dipolar ene
to the thermal energy:

l5
mp

2

4pm0~2a!3kT
5

pm0a3b2H0
2

2kT
, ~1!

which gives, fora50.24mm, b'1 and room temperature
l56.731026H0

2 ~H0 in A/m! or l50.04B0
2 ~B0 in gauss!.

We see that even for fields as low as 5 G the magnetic force
already dominates the thermal forces.

In the presence of a shear flow an additional parameter
structure formation is the Pe´clet number, which is the ratio
between the hydrodynamic force 6phġa2 induced by the
shear rateġ on a particle and the thermodynamic forc
kT/a. With the carrier fluid being water with a viscosityh
51023 Pa s we obtain

Pe5
6phġa3

kT
50.064ġ . ~2!

The Péclet number used in this work ranges from lo
~Pe50.02! to high values~Pe510!, but it is worth noting that
for all the results that will be presented in this paper, t
magnetic forces dominate the shear forces; in other wo
the Mason number Ma5Pe/l is much lower than unity. This
means that the flow only contributes to rearrange the st
ture but not to destroy it.

The shear rateġ in Eq. ~2! is given by gv, where g
5x0 /h is the strain,h is the thickness of the cell, andx0 is
the amplitude of the oscillatory motion (x5x0 cosvt). The
frequencyf 5v/2p of the oscillating shear flow was alway
lower than 10 Hz. In this range, we can consider that
shear flow is linear since the penetration lengthd5Ah/r f
5330mm for f 510 Hz was larger than the thicknessh
5100mm used for most of the experiments. The expe
ments done with a larger thickness were made at lower
quencies in order to fulfill this condition.

III. TRANSITION FROM CYLINDERS TO STRIPES

In the absence of a flow, the increase of the magnetic fi
involves a phase separation, whose characteristics have
reported elsewhere@8,9#. The structure formed during thi
phase separation consists of columnar aggregates tha
located on a hexagonal network. Such a structure@cf. Fig.
2~a!# is only obtained if some special care is taken in order

r-
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806 57S. CUTILLAS, G. BOSSIS, AND A. CEBERS
avoid out-of-equilibrium configurations. This is achieved
the following way: The field is increased by steps of 0.1 O
the duration of one step is about 4 s, and then the fiel
switched off during a short period before it is increased ag
for the next step. In the interruption period, when magne
forces between particles are absent, the particles can dif
over a length comparable to their radius, which allows th
to avoid being permanently trapped in a nonequilibrium c
figuration. The equilibrium structure formed in this way
hexagonal at least for not too high initial volume fractions
we begin to shear this structure with a small strain~g,0.1!,
the aggregates lose their cylindrical symmetry but rem
well identified @cf. Fig. 2~b!#. Above a critical straingc
50.15, there is a transition towards a striped structure wi
well-defined period~approximately 7mm!, which is illus-
trated in Fig. 2~c!. This critical strain characterizing th
crossing from cylinders to stripes is independent of the
thickness and the magnitude of the field. For volume fr
tions between 4% and 18%, there is also no change in
critical strain, at least within the uncertainty (0.13,gc
,0.17), but for the lower volume fraction~f50.5%! we
have found a different critical straingc50.2. At last, we
have verified that this critical strain does not depend on
Péclet number. It then appears that the critical strain for
shear-induced transition between cylinders and stripe
quite independent of all the parameters.

A tentative interpretation of the critical strain may sta
from the comparison of the energy of the two different stru
tures at zero strain. This calculation has been done in@11#
and it is possible to calculate the change of energy due to
inclination of a cylindrical structure relatively to the field
we neglect the end effects due to the finite size of the sam

FIG. 2. Top view of the suspension recorded by a video cam
The field is perpendicular to the plane of the figure.~a! No flow, ~b!
oscillating shear flow with a straing50.1, ~c! same as~b! but with
g50.3, and~d! same as~c! except the magnetic field, which ha
been multiplied by 2. Note the change of scale from~c! to ~d!.
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@19#. The transition from cylinders to stripes is expected
occur for a straingc such that the magnetic energy of th
inclined cylinders reaches the energy of the stripe patte
Note that this last energy should not change with the sh
since the stripes are parallel to the velocity lines. This
proach predicts a critical strain that is an order of magnitu
lower than the experimental one. It probably indicates t
the rearrangement from the cylinders to the stripes invol
the passage by intermediate structures of higher ene
which makes it difficult to predict.

Let us now study the striped structure that is formed
strains larger thangc50.15. The main feature characterizin
this structure is its periodd or, more exactly, a dimensionles
periodd* 5d/h, whereh is the cell thickness. The study o
this period with the different parameters (f,l,h,Pe) is the
purpose of the next section.

IV. PERIOD OF THE STRIPES

In this section we are going to present the experimen
results for the period of the structure and a model that w
help us interpret the changes of the period relative to diff
ent parameters. This model is based on the assumption
the period can be obtained from the minimization of the fr
energy of the system even though this structure is formed
the application of a flow. Actually, as already pointed o
the magnetic forces dominate the hydrodynamic forces in
the situations we have studied, so we can expect that it is
magnetic energy that will drive the period of the structu
Before we introduce this model, let us present our main
perimental findings.

A. Experimental results

In Fig. 3 we have plotted the dimensionless periodd*
versus the Pe´clet number for two different strainsg50.15
and 2, with a magnetic field corresponding tol555. In the
low-Péclet-number region, a higher strain gives a larger p
riod, but for a Pe´clet number above approximately 2, th
period becomes independent of the strain. A still more int
esting observation is that below this Pe´clet number of 2 the
structures are not stable: If we stop the flow, the strip
structure breaks down into a large number of small segm

a.

FIG. 3. Period of the layered structure versus the Pe´clet number
for a given value of the magnetic field~l555!. The upper curve is
for a strain rateg52 and the lower curve for the critical strain ra
gc50.15.
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57 807FLOW-INDUCED TRANSITION FROM CYLINDRICAL TO . . .
that are disoriented with respect to the initial structure; thi
illustrated in the upper part of Fig. 4. On the contrary, if w
stop the flow after the structures have been formed at a
Péclet number and highl, they remain stable if we keep th
field constant. For instance, the pattern shown in Fig. 4~c!
will remain identical if we stop the flow, but if we decreas
the field, then the stripes begin to bend in order to decre
the distance between the layers and the pattern corresp
to the equilibrium values at lower field strength. This beha
ior is illustrated in Fig. 4~d!, which is similar to the one
observed in other smectic systems@2#. These two features
@the stability of the stripes when the flow is stopped~keeping
the same field! and the bending of the stripes if we decrea
the field# seem to indicate that the structure formed for Pe.2
is an equilibrium structure. Actually, strictly speaking, it is
metastable structure since the stable structure in the abs
of flow is a triangular network of cylinders but the differen
in the energy between the two structures is small@11#. In the
presence of the flow, the choice of the periodd/h of the
stripe pattern will correspond to a minimum of the magne
energy only if hydrodynamic diffusion is high enough
help the particles find their optimum structure. Actual
these are likely fragments of chains, rather than individ
particles, which are moving since, as previously stated,
hydrodynamic shear force on a pair of particles is alwa
smaller than the magnetic force. Nevertheless, the hydro
namic force dominates at the scale of aggregates sinc
increases linearly with the size of the object placed in
shear.

In the regime where the structure is stable after turning
the flow, we have measured the normalized period of
striped structure versus the external magnetic fieldH0 for

FIG. 4. Top view of the suspension recorded by a video cam
A layered structure~a! has been formed at low Pe´clet number; if we
stop the flow, the layered structure breaks down~b!. The layered
structure~c! formed at high Pe´clet number~Pe52.3! and highl
~l5132! is stable even if we stop the flow. Then, decreasing
field, we obtain a bending instability~d!.
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different initial volume fractions. These results are summ
rized in Fig. 5. Two features are worth noting. First, w
observe a decrease of the period when we increase the
ume fraction. This is quite understandable since we kn
@11# that such a behavior is already true for the distan
between aggregates in the absence of the flow. Neverthe
this decrease is less pronounced at a high field than at a
field. The second, more surprising observation is that
found an increase of the period with the amplitude of t
magnetic field. This can be noted by comparing Figs. 2~c!
and 2~d!: The period changes from 6.5 to 9mm when the
field is multiplied by a factor of 2~pay attention to the
change of scale!. In ferrofluids, the opposite behavior is ob
served. This increase of the period takes place in a rang
magnetic field that depends on the initial volume fraction~cf.
Fig. 5!. In order to understand these behaviors we have p
tulated a model based on a minimization of the magne
energy, which is the object of the next subsection.

B. Model for the period of the striped structure

The schematic view of the striped structure is shown
Fig. 6 and we shall use the following notations for the ma
netization:Ma is the magnetic moment of one stripe andVa

a.

e

FIG. 5. Evolution of the period of the stable stripe pattern~Pe
52.3! with the field for different volume fractions.

FIG. 6. Schematic view of the stripe structure with the notatio
used in this paper.
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808 57S. CUTILLAS, G. BOSSIS, AND A. CEBERS
is its volume;M15Ma /Va is the magnetization inside eac
stripe andM5M1w is the average magnetization of th
sample. The quantityw5e/d is the apparent volume fractio
of the stripes, that is, the part of space that is occupied by
stripes. It must not be confused with the internal volum
fraction inside the stripesfa5f/w, with f the average vol-
ume fraction of the suspension. The magnetic energy of
system is obtained from the product of the total magne
moment of the sample and the external field

Um

V
52

1

2V
NaMa•H052

1

2
wM1•H0 , ~3!

whereNa /V is the number of stripes per unit volume.M1
can be calculated from the magnetic momentmp of a particle
inside the stripe. We have

M15
fa

4
3 pa3

mp , ~4!

with

mp54pm0ba3H loc , ~5!

whereb is the same quantity as in Eq.~1!. Here, instead of
the external field that has been used to definel we must
consider the local fieldH loc on the particle. This local field is
the external fieldH0 minus the demagnetizing field, whic
comes from the magnetizationM1 , plus the Lorentz field:

H loc5H02
DM1

m0
1

M1

3m0
. ~6!

HereD is the demagnetizing factor related to the stripe p
tern. It is given by@2#

D~w,d* !5H w1
d*

p3w (
n51

`
sin2~pnw!

n3

3F12expS 2
2pn

d* D G J . ~7!

In Eq. ~6! the quantityH5H02DM1 /m0 is the average field
on a scale larger than the typical size of the structure.
local field is obtained with the trick of the Lorentz cavity.
we assume that the width of a stripe is much larger than
diameter of the particle, we can take a Lorentz sphere in
the stripe with a Lorentz fieldH loc5M1/3m0 . From Eqs.
~3!–~7! we obtain for the magnetizationM1 of a stripe:

M15m0xa
0H0 with xa

05
3bfa

113bfa~D2 1
3 !

. ~8!

Inserting this expression forM1 into Eq. ~3! gives the value
of the magnetic energy per unit volume

Um

V
52

1

2
wm0H0

2xa
0. ~9!

We have to introduce also the surface tension of the str
s. The corresponding energy per unit volume is
e
e

e
c

t-

e

e
e

es

Us

V
5

2s

d
. ~10!

In this model we have two unknowns:w andd. Now, if
we assume that the fractionw of the space occupied by th
stripes does not depend on the period, the period is obta
by minimization of the total energy, for a given value ofw,
relative to the period:

]@~Um /V!1~Us /V!#

]d U
w

50. ~11!

From Eqs.~3!, ~9!, and~10! we obtain

w
M1

2]D

2m0]d
U

w

5
2s

d2 . ~12!

Equation~12! gives the period of the structure if we suppo
that w or equivalently the internal volume fractionfa ~since
w5f/fa! of the stripe pattern is known. In practice th
dense phase is compressible and its volume fracionfa is
unknown, except at high values ofl, where the increase o
magnetic pressure should give a volume fraction close to
maximum packing fraction of the system. In the gene
case, we need an additional equation to obtain this inte
volume fraction. It is based on a balance between the
motic pressurePos, which should destroy the stripes in th
absence of the field, and the magnetic pressurepm , which
gives the attractive forces necessary to obtain this ph
separation. The magnetic pressure is simply given by

pm52
]~Um /V!

]w U
d

~13!

or, from Eqs.~8! and ~9! and taking into account thatfa
5f/w,

pm52
M1

2

2m0
S 1

3
2D1w

]D

]wU
d
D . ~14!

For the osmotic pressure we can use either the Carna
Starling expression~wherev5 4

3 pa3 is the particle volume!

pos5
kTfa~11fa1fa

22fa
3!

v~12fa!3 ~15!

or somead hocexpressions that show better agreement w
the pressure calculated by the numerical simulation for
internal volume fraction higher than 40% such as@20#

pos5
kT1.85fa

v~0.642fa!
. ~16!

In the following we shall use this expression where the va
of 0.64 for the maximum volume fraction corresponds to
isotropic disordered medium. We could as well take t
value of 0.69, which corresponds to the body-center
tetragonal equilibrium structure of a monodisperse susp
sion in the limit of highl, although this structure will not
form with the rather polydisperse suspension we are us
In any event, we have found by using both 0.64 and 0.69
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57 809FLOW-INDUCED TRANSITION FROM CYLINDRICAL TO . . .
Eq. ~16! that the dimensionless period was not very sensi
to this change of maximum volume fraction.

The internal volume fraction is obtained by balancing t
osmotic and magnetic pressures

pos1pm50. ~17!

Equations~12! and~17! have to be solved simultaneously
order to obtain the equilibrium period and the internal v
ume fraction.

The surface energys is unknown; it is, by definition,
related to the difference in energy between a particle loca
in the bulk of the stripe and on the edge. If we consider
magnetic particles to be hard spheres, the only interpar
force comes from the magnetic field. It is the difference b
tween the local field inside the stripe and on the edge
will give the surface energy. It can be shown~cf. the Appen-
dix! that this surface energy is proportional to the square
the magnetization and to the radius of the particles:

s5C
aM1

2

m0
, ~18!

where C is a constant that takes the value1
3 if we use a

mean-field approach. Using Eq.~18! and the definition ofl
given by Eq.~1!, Eqs.~12! and ~17! become

w
]D

]d* U
w

5
4Ca

~d* !2h
~19!

and

212lS f

w2bf~123D ! D
2S 1

3
2D1w

]D

]wU
d*

D
1

1.85f

~0.64w2f!
50. ~20!

Equations~19! and ~20! will allow us to calculate the
equilibrium periodd* and the apparent volume fractionw
for a given value of the parameterl ~or, equivalently,H0!
and of the initial volume fractionf. Note that in the deriva-
tion of Eq. ~19! we have neglected the derivative ofM1

2,
which is small relative to the term on the right-hand side
Eq. ~19!.

C. Comparison between theory and experiments

Before we test this model relative to the experimen
results of Fig. 5, let us look at the dependence of the pe
on the thicknessh of the cell. With our device, we can easi
change the cell thickness, keeping unchanged the strain
the Péclet number by varying the amplitudex0 and the fre-
quency f of the oscillatory motion of the upper plate. W
have plotted in Fig. 7 the evolution of the logarithm of th
period d versus the logarithm of the cell thicknessh for
l5242, Pe52.3, f54.5%, andg50.45. The best fit with a
straight line gives a slope of 0.56 and a fit with a slope
0.50 is still compatible with the error bars. Actually, we c
predict this behavior,d}h0.5, if the normalized periodd*
5d/h remains small compared to unity~which is the case in
e

-

d
e
le
-
at

f

f

l
d

nd

f

all our experiments!. Then we can neglect the exponenti
term in Eq.~7! and we get from Eq.~19!

d25
4p3Ca

(
n51

`
sin2~pnw!

n3

h. ~21!

The prefactor ofh contains the apparent volume fractio
w, which could be indirectly a function ofh, because in the
balance of magnetic and osmotic pressure,pm depends on
the demagnetization factorD. Nevertheless, for high value
of l, the magnetic pressure is high and the internal volu
fraction fa inside the aggregates should be near its ma
mum. In these conditions we do not expect any signific
change ofw with the cell thickness and the prefactor in E
~21! should remain constant, justifying the predictiond
}h0.5. This is fairly well verified experimentally.

The intersection with the origin, taking the valuefa
50.64, allows us to obtain the constantC appearing in the
expression of the surface tension. We obtainC50.005,
which is very low compared to the value1

3 expected from the
mean-field evaluation. We shall return to this point lat
Taking this value ofC, we can solve Eqs.~19! and~20! and
predict the change of the period with the initial volume fra
tion. The result is shown in Fig. 8~solid line! for a high
value of l ~l5308! together with the experimental points
The agreement is not perfect, especially for the lower volu
fraction where the predicted period is two times the expe
mental one. Nevertheless, this model succeeds quite we
predicting a plateau for volume fractions higher than 4% a
a strong increase at the lower volume fractions. It also p
dicts an increase of the period with the field, but the range
l over which this increase should occur is two orders
magnitude lower than the experimental one, as we can se
Fig. 9 ~solid line! for the volume fractionf54.5%.

Before we discuss this strong disagreement, let us de
mine the physical mechanism that produces an increas
the period with the field. If the internal volume fraction o
the stripes is constant, then, as both the magnetic energy
the surface tension scale asM1

2, we do not expect a chang
of period with the field, as can be seen from Eq.~19!, which
does not containl. If now we take into account that a
increase ofl will increase the magnetic pressure and the

FIG. 7. Log10 of the period of the layered pattern versus t
log10 of the cell thickness. ——, linear fit with slope 0.56; ---
linear fit with slope 0.50. Dots are experimental points.
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fore fa , then the apparent volume fractionw5f/fa will
decrease along with the demagnetization factorD and the
energy. This more favorable magnetic energy obtained
the increase of volume fraction inside the stripes allows u
find a new minimum of the energy for a larger period.

V. DISCUSSION

From this comparison between the experimental res
and our model, we can conclude that the increase of
stripes period with the field, its decrease with the appar
volume fraction, and its behavior with the cell thickness a
quantitatively and qualitatively, described by a theory ba
on thermodynamic equilibrium in the absence of a flo
Nevertheless, two points remain unexplained. First, the
face energy determined experimentally from the depende
of the period on the cell thickness is much smaller than
value expected on the basis of a mean-field theory. Sec
the range of magnetic energy that gives rise to the increas
the period is two orders of magnitude greater than the
predicted by the model~compare in Fig. 9 the dotted line t
the filled circles!. Concerning the low value of the surfac
energy, a possible explanation could be that the choice

FIG. 8. Stripe period versus the initial volume fraction f
l5264. ——, theoretical predictions@Eqs. ~19! and ~20! with C
50.005#. Dots are experimental results.

FIG. 9. Increase of stripe period with the magnetic field~ex-
pressed throughl! for the initial volume fraction~f54.5%!. Dots
are experimental results. ----, theoretical prediction without fl
~Pe50!; ——, theoretical prediction with Pe52.3.
y
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Lorentz sphere inside the stripe to calculate the local field
not appropriate for the particles on the edge of the stripe:
local order is anisotropic, the thickness of the stripes is o
a few particles in diameter, and the dipolar interactions w
the closest particles of the neighbor stripe can also mo
this surface energy.

Concerning the second point, we have to take into acco
the fact that the suspensions are not monodisperse. The
dard deviation is about 10% and, even if a small fraction
particles has a diameter two times lower than the aver
diameter, the osmotic pressure that scales as the invers
the cube of the radius could be much larger. Neverthel
we should assume that the effect of the polydispersity
equivalent to lowering the average diameter by a factor o
which is clearly unacceptable. A more convincing explan
tion is obtained by considering the increase of the press
normal to the plane of the stripes, which is due to the sh
flow. This pressure comes from the shear force between
particles that scales as 6phġa2; since the total pressure i
normalized bykT/v, we shall have an extra term in th
balance of pressure@Eq. ~20!#, which will be a function of
the Péclet number@Eq. ~2!# and will act in the same direction
as the osmotic pressure. This pressure will increase with
internal volume fraction of the stripes and, as for all t
components of the stress tensor, will diverge for the ma
mum packing fraction allowing a flow. We can choose t
expression for the normal pressure given by Brady and
workers @21,22#, where the normal stress differencesNi ( i
51,2) are shown to diverge asNi /hġ5(12fa /fm)22P̄e

when Pe!1. This quantityPe'PeD0 /D0
s(f) is built from

the diffusion coefficient at the actual volume fractionD0
s(f)

rather than the diffusion coefficient of an isolated partic
D0 . As D0

s'(12f/fm) for f→fm this model predicts
normal stresses and thus a pressure normal to the plane o
stripes, which scales as

ph* 5~12fa /fm!23Pe2. ~22!

For Pe@1 the scaling is different with a power22 instead
of 23. We have then added the term (12fa /fm)22Pe2 to
the left-hand side of Eq.~20!. The result of the prediction is
shown by the solid line in Fig. 9. The agreement with t
experiment is much more satisfying. This improvement e
phasizes the importance of the normal stress difference
least for low to intermediate values ofl. This finding is
interesting since it gives a way to correlate the normal str
differences to the expansion of the width of the stripes.
particular, it is worth noting that, once the layered patte
has been formed in the presence of a flow, we can turn
the magnetic field and measure the hydrodynamic diffus
flux in the direction of the vorticity by recording the disap
pearance of the striped pattern. The relation between nor
stresses and shear-induced diffusion is of interest in m
fields related to the dynamics of suspensions@23# and this
system offers several possibilities to study this relation.

VI. CONCLUSION

In this study of field-induced phase separation in the pr
ence of a shear flow we have shown that a well-defined
ered structure appears above a critical strain rate of 0
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This critical strain rate is independent of most of the para
eters, but it increases slightly for the smaller volume fracti
If the layered pattern is formed at a low Pe´clet number, it
breaks when the flow is stopped. This is not the case if
pattern is formed at a Pe´clet number higher than unity. In th
latter case, the pattern is stable in the absence of a flow
if we decrease the magnetic field we observe a bending
stability that is coherent with the fact that the period of t
pattern decreases when the magnetic field decreases. T
observations indicate that in order to attain an equilibri
structure we need a strong enough shear, able to overc
some potential barrier. For these equilibrium structures
tained at high values ofl we can predict the evolution of th
period with the cell thickness or with the initial volume fra
tion, without taking into account explicitly the effect of th
flow. The agreement of the model with the experiments
even quantitative except for the prediction of the increase
the period withl, at intermediate values ofl. In this range
of l where the maximum volume fraction inside the strip
is not reached, the effect of the shear flow is to enhance
hydrodynamic diffusion and hence the apparent volume fr
tion of the stripes. This effect needs to be investigated
more detail in future work in addition to the value of th
critical strain rategc for other magnetic suspensions.
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APPENDIX: DERIVATION OF EQ. „18…

FOR THE SURFACE TENSION

The particles that are at the interface between the de
phase and the suspending fluid experience a local field th
different from the local field inside the stripe. If we assum
that the magnetization is constant everywhere in the st
and zero in the suspending fluid, then the Lorentz field fo
particle on the boundary comes from the integral ofM1•n on
a half sphere withn the normal to the Lorentz sphere. Th
will give

H loc5H02D
M1

m0
1

1

2

M1

3m0

instead of Eq.~6!. Taking into account that the fraction o
particles on the surface is 4a/e gives a modified magnetiza
tion of the stripe withD2 1

3 1 2
3 a/e instead ofD2 1

3 in the
denominator ofx0

a @Eq. ~8!#. Then if a/e is small compared
to unity we can develop the magnetic energy as

Um

V
52

1

2
wm0H0

2xa
01

wM1
2

3m0

a

e
;

The second term is the surface energy appearing in Eq.~10!.
If we identify it with Eq. ~10!, takingw5e/d, we obtain

s5
a

3m0
M1

2.
llo,

J.
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